

Power Sector Scenario and Flexibility requirements

INSTALLED CAPACITY

TOTAL: 344718.61 MW

INSTALLED CAPACITY- RES

GENERATION(2017-18)

Gross Electricity Generation in India Modewise -(Utilities) (31.03.2018)*

ALL FIGURES IN GWh

NATIONAL ELECTRICITY PLAN

National Electricity Plan (NEP) includes

- > Review of the current Plan (12th Plan : 2012-17)
- > Demand Projections for the years 2021-22 and 2026-27
- > Capacity addition requirement from conventional sources
- > Integration of Renewables

DEMAND

DEMAND REDUCTION DUE TO DSM

Year	Peak Demand (GW)	Energy Requirement (BU)	Year	Energy Requirement (BU)	Peak Requirement (GW)
2021-22	225.7	1,566	2021-22	206	9
2026-27	298.8	2,047	2026-27	273	12

RES INSTALLED CAPACITY BY MARCH,22

केविप्रा टब्व

TYPICAL ALL INDIA DEMAND & NET LOAD CURVE (2021-22)

ALL INDIA LOAD DURATION CURVES (2021-22)

BASE CASE(2017-22) ASSUMPTIONS

DEMA	AND(CAGR 6.1	8%)	Capacit	yaudition	considered				
Year Peak Demand (GW)	Peak Demand	Energy		Committed Capacity (MW)			Cool based Canasity	RES Capacity	Retirement of Coal
	Requirement (BU)	Years	Hvdro	Nuclear	Gas	under construction (MW)	by March,	Based Plants	
2021-22	225.7	1,566						2022 (MW)	(2017-22) (MW)
			2017-22	6,823	3,300	406	47,855	175,000	22,716

Capacity addition considered

BASE CASE(2017-22) RESULT

Additional Coal based capacity Requirement during 2017-22 (MW)*	Coal Based Generation (Gross) (GWh)	Expected PLF% during 2021-22 During 2017-22*		
6445	1072	56.5%		

*Actual coal based capacity addition required during 2017-22 is 6,445 as per study even though 47,855 MW are expected to come between 2017-22. However, this addition of 47,855 MW of coal based capacity during 2017-22 would bring down the PLF as indicated in the result.

BASE CASE(2022-27) ASSUMPTIONS

DEMAND(CAGR 5.51%)		Capacity addition considered							
Year Peak Demand (GW)	Peak Demand	Energy		Committed Capacity (MW)			Coal based	RES Capacity	Retirement of Coal
	Requirement (BU)	Years	Hydro	Nuclear	Gas	construction during 2017-22	by March,	Based Plants	
2026-27	298.8	2,047		•			(MW)	2027 (MW)	(2022-27) (MW)
			2022-27	12,000	6,800	0	47,855	275,000	25,572

BASE CASE(2022-27) RESULT

Additional Coal based capacity Requirement during 2022-27 (MW)	Coal Based Generation (Gross) (GWh)	Expected PLF% during 2026-27		
46,420	1259	60.5%		

Projected Installed Capacity(Base Case)

March,2027

ALL FIGURES IN MW

CONCLUSIONS

1. The share of energy generation from Renewable energy sources is going to increase from 7 % at present to around 20% of the total energy requirement by the year 2022.

2. India has committed to increase the share of installed capacity of Non-fossil fuel in the to be 40% by 2030.

ISSUES

However, increase in generation from RE sources with the variability associated with RE generating sources will lead to

- Reduction in the PLF and Efficiency of Coal based plants.
- Conventional Generators to be more flexible. This may require retro-fitting of old coal based units
- Increase in O&M costs of conventional generators due to flexible operation
- Future capacities to have fast ramping up and ramping down capabilities

Need of Flexibility in Coal based Power stations

- The amount of Renewable energy produced directly depends on the nature. Thus, the output varies both seasonally and daily.
- There are short term variations due to weather conditions like clouds or rainfall.
- Normally generation from a solar plant gradually increases after dawn and reaches a maximum around noon and then gradually decreases and becomes "Zero" with the advent of evening.
- To adjust energy produced from RE sources, coal based power stations needs to be flexible.

